Demystifying MCAT physics

Health Professions MCAT physics

Physics can be a very time-intensive section on the MCAT. There are numerous equations to memorize and parse through for each question and it is not always obvious which are relevant. You can waste a lot of valuable time guess-and-checking equations that have the related variables in them. I will illustrate some techniques from personal experience to save time and find the right answer when approaching one of these passages!

Step 1: Equations as Building Blocks

Firstly, it is critical that you memorize the most relevant physics equations for the test day. Many are not going to be included in the test, but they do expect you to know them. These should encompass the topics of mechanics and energy, fluids and gases, thermodynamics, sound, lights and optics, electrostatics and circuits, and magnetism. It can be helpful to group equations that yield the same variable since the MCAT commonly gives values that require multiple connected equations to be solved. Below are a few associated equations that are important to remember for test day:

Screen Shot 2022-07-14 at 2.47.14 PM

Step 2: Connect Equations with Relevant Concepts 

Next, connect each equation to the types of concepts that it will be useful for. This can be accomplished by becoming familiar with topics that the AAMC frequently tests. These include atomic and nuclear phenomena, circuits, movement and forces, and fluid and gases. They do test many topics outside of this list, but these are easily tied to biological systems questions. For example, you could see several physics questions in a passage about blood flow or lung capacity. It is helpful to recognize that they are most likely asking for a pressure equation and to connect relevant topics (Bernoulli’s principle or the Venturi effect). 

Another common topic is body kinetics as models of movement and force physics. For these, it is important to recognize the interplay between torque and forces in muscles. Always label your forces and keep track of units. One example would be calculating the force exerted by the biceps muscle to hold the forearm steady when a load is placed on the hand. An important feature to keep in mind for this problem is the elbow angle which impacts the amount of force the bicep muscle needs to exert. Personally, I would approach this problem and draw a simplified drawing of the joint as a flat surface with a rotation point, filling in relevant forces at play and equations that could link them. There are many strategies to employ when solving MCAT physics problems. The most important, however, are to organize your time and keep track of forces and equations involved. 

Step 3: When in Doubt, Trace the Units

One final strategy to employ when stuck on a physics problem, is to look at the multiple choice answer units and connect them to equations which will yield those units. This does require you to have intimate knowledge of each equation and the units involved, but this is a great starting point if you are truly lost or to check your work.

Comments

topicTopics
academics study skills MCAT medical school admissions SAT expository writing college admissions English MD/PhD admissions strategy writing LSAT GMAT GRE physics chemistry math biology graduate admissions academic advice ACT interview prep law school admissions test anxiety language learning premed MBA admissions career advice personal statements homework help AP exams creative writing MD study schedules test prep computer science Common Application summer activities history mathematics philosophy organic chemistry secondary applications economics supplements research 1L PSAT admissions coaching grammar law psychology statistics & probability legal studies ESL CARS SSAT covid-19 dental admissions logic games reading comprehension engineering USMLE calculus PhD admissions Spanish mentorship parents Latin biochemistry case coaching verbal reasoning DAT English literature STEM excel medical school political science skills AMCAS French Linguistics MBA coursework Tutoring Approaches academic integrity chinese letters of recommendation Anki DO Social Advocacy admissions advice algebra art history artificial intelligence astrophysics business cell biology classics diversity statement gap year genetics geometry kinematics linear algebra mechanical engineering mental health presentations quantitative reasoning study abroad technical interviews time management work and activities 2L DMD IB exams ISEE MD/PhD programs Sentence Correction adjusting to college algorithms amino acids analysis essay athletics business skills careers cold emails data science dental school finance first generation student functions graphing information sessions international students internships logic networking poetry resume revising science social sciences software engineering tech industry trigonometry writer's block 3L AAMC Academic Interest EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture argumentative writing art art and design schools art portfolios bacteriology bibliographies biomedicine brain teaser campus visits cantonese capacitors capital markets central limit theorem centrifugal force chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism escape velocity evolution executive function freewriting genomics harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite institutional actions integrated reasoning intermolecular forces intern investing investment banking lab reports linear maps mandarin chinese matrices mba medical physics meiosis microeconomics mitosis mnemonics music music theory nervous system neurology neuroscience object-oriented programming office hours operating systems

Related Content