How to determine if an acid is strong or weak on the DAT

DAT

Statistical Mediation & Moderation in Psychological Research (39)As someone studying for the DAT, you’ve seen this common problem before: which molecule is the stronger acid? When assessing the strength of an acid, the most important thing to look at is not the acid itself but its conjugate base. The guiding principle is the more stable the conjugate base A- the stronger its corresponding acid HA.

A little bit of background before going forward: electron withdrawing groups (EWG) are substituents that draw the electron density of its neighboring atoms. Electron withdrawing groups include such things as halogens, cyanide, and carboxylic acid derivatives. They create a dipole where the EWG has a partial negative charge, and the carbon atom to which it is attached has a partial positive charge. This carbon with the positive charge helps to stabilize the negative charge in the conjugate base.

1.) Resonance

If the negative charge of the conjugate base can be spread over a greater number of atoms, the more stable the anion will be.

2.) Electronegativity of Atom with Negative Charge

When comparing the stability of the conjugate base, look at the atoms which have the negative charge and compare their relative electronegativities. The greater the electronegativity of the atom, the greater the hold on the electrons. As a result, this leads to a more stable anion.

3.) Size of Atom with Negative Charge

Also look at the size of the atom that has the negative charge. If the negative charge is on a larger atom, the charge can be spread over a larger amount of space, creating a more stable anion.

4.) Induction Effects

The presence of electron withdrawing groups leads to a more stable anion. The greater number of electron withdrawing groups, the more stable the anion. Additionally, the closer the electron withdrawing group to the negative charge, the more stable the anion.

5.) Hybridization

When comparing alkanes, alkenes, and alkynes as acids, an important principle is the nature of the orbital containing the lone pair electrons in the conjugate base. The orbital with a greater s character is lower in energy and, therefore, more stable. Alkanes have an sp3 orbital (25% s), alkenes have an sp2 orbital (33% s), and alkynes have an sp orbital (50% s).

In terms of increasing acidity:

Alkanes < Alkenes < Alkynes

Remembering these five determinants of stability will allow you to quickly compare molecules and determine which is a stronger acid.

Reference

Brown, William, et al. Organic Chemistry. 6th ed., Cengage Learning, 2012.

Comments

topicTopics
academics study skills MCAT medical school admissions SAT expository writing college admissions English MD/PhD admissions strategy writing LSAT GMAT GRE physics chemistry math biology graduate admissions academic advice ACT interview prep law school admissions test anxiety language learning premed MBA admissions career advice personal statements homework help AP exams creative writing MD study schedules test prep computer science Common Application summer activities history mathematics philosophy organic chemistry secondary applications economics supplements research 1L PSAT admissions coaching grammar law psychology statistics & probability legal studies ESL CARS SSAT covid-19 dental admissions logic games reading comprehension engineering USMLE calculus PhD admissions Spanish mentorship parents Latin biochemistry case coaching verbal reasoning DAT English literature STEM excel medical school political science skills AMCAS French Linguistics MBA coursework Tutoring Approaches academic integrity chinese letters of recommendation Anki DO Social Advocacy admissions advice algebra art history artificial intelligence astrophysics business cell biology classics diversity statement gap year genetics geometry kinematics linear algebra mechanical engineering mental health presentations quantitative reasoning study abroad technical interviews time management work and activities 2L DMD IB exams ISEE MD/PhD programs Sentence Correction adjusting to college algorithms amino acids analysis essay athletics business skills careers cold emails data science dental school finance first generation student functions graphing information sessions international students internships logic networking poetry resume revising science social sciences software engineering tech industry trigonometry writer's block 3L AAMC Academic Interest EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture argumentative writing art art and design schools art portfolios bacteriology bibliographies biomedicine brain teaser campus visits cantonese capacitors capital markets central limit theorem centrifugal force chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism escape velocity evolution executive function freewriting genomics harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite institutional actions integrated reasoning intermolecular forces intern investing investment banking lab reports linear maps mandarin chinese matrices mba medical physics meiosis microeconomics mitosis mnemonics music music theory nervous system neurology neuroscience object-oriented programming office hours operating systems