Orgo 1 strategies: protocol for acid-base problems

academics chemistry organic chemistry

 

Determining which of two molecules is more acidic is tricky if you haven’t yet organized those factors that influence acidity. The protocol is a method I learned from my mastermind Orgo 2 professor to keep these ideas in order when they come into conflict. Namely:

Size is more important than

Electronegativity, which is more important than

Resonance, which trumps the

Inductive Effect.

How to Use the Protocol

When determining acidity, first make the change (deprotonate the atom of interest), and then evaluate the change. As we know, the stability of the resultant negative charge dictates the original molecule’s acidity. Anything that stabilizes this new negative charge makes the original acid more acidic (i.e. lower pKa, higher Ka). Anything that destabilizes the negative charge makes the original acid less acidic (i.e. higher pKa, lower Ka).

This makes sense, right? When we’re deprotonating an acid we’re bringing the acid to an unhappy place: a place with a full-blown negative charge. (We like neutrality–not charge!) Of course, then, in picking the more acidic molecule we should pick the one being brought to the better of the two places. In other words, minimize the discomfort!

When comparing basicity, we want to ask ourselves which of the two bases we’re looking at is more comfortable with its electrons. Bases that are more comfortable with their electrons are less basic.

This also makes sense. If I’m comfortable with my electrons, why would I give them away to a proton?

1. Size

We use size when comparing atoms in the same column of the periodic table. Atoms lower in the periodic table are larger and better able to spread out and stabilize negative charges. This explains why thiols are more acidic than alcohols and why acid halides become more acidic as you move down the column of halogens.

Sanchez_Picture 1.png

2. Electronegativity

We use electronegativity when comparing atoms in the same row of the periodic table. Atoms to the right of the periodic table are more electronegative and therefore better able to withstand a negative charge. This explains why alcohols are more acidic than amines.

Sanchez_Picture 2.png

What about basicity? Why is Orgo’s hallmark basic functional group the amine and not the alcohol? Oxygen is to the right of and more electronegative than nitrogen. Therefore, oxygen holds onto its lone pair electrons tighter and is more comfortable hanging onto them. An amine’s nitrogen holds onto its lone pair looser and is less comfortable hanging onto them.

Side Note: electronegativity also comes into play when comparing two of the same atom with different hybridizations. For example, a sp3 hybridized nitrogen is less electronegative than a sp2 hybridized nitrogen, which is less electronegative than a sp hybridized nitrogen. Think about how this affects basicity.

3. Resonance

If you’ve made it this far down the protocol, it’s because you’re comparing charges on the same atom (with identical size and electronegativity). Your new job is to count resonance options. The conjugate base with more resonance options has more ways to delocalize and stabilize the resultant negative charge. As always, minimize the discomfort!

Sanchez_Picture 3.png 

What about basicity? A negatively-charged base with more resonance options is clearly more comfortable with its electrons than a base with fewer resonance options. This makes negatively-charged bases with additional delocalization less basic!

4. Inductive Effect

You made it this far down the protocol if you didn’t find resonance options in either molecule or if you’re comparing two carboxylic acids. (Carboxylates have two and only two resonance options, which gives us a tie at the protocol’s resonance level.)

Recall that inductive donors are general alkyl groups (e.g. methyls and ethyls). After making the change and evaluating, we see that alkyl inductive donors destabilize negative conjugate bases. I tell my students that such donors blow up the negative charge.

Conversely, inductive withdrawers like halogens stabilize negative charges. I tell my students that such withdrawers quench the negative charge.

Andrew 4.png

What about basicity? If you’re a base with a blown-up negative charge, you’re quite uncomfortable with your electrons and much more apt to throw them at a proton. On the other hand, if you’re a base with a quenched negative charge, you’re in a more comfortable position and less apt to give away your electrons.

Conclusion

The last thing you should do in orgo is memorize statements like “more resonance = more acidic.” Statements like these are meaningless because they don’t rely on a string of logic. The protocol gives you the theory necessary to reason through your acid-base problems without having to rely on tables of pKa values–my absolute biggest pet peeve! Use your head, and don’t forget:

Size > EN > Resonance > Inductive Effect.

Comments

topicTopics
academics study skills MCAT medical school admissions SAT expository writing college admissions English MD/PhD admissions strategy writing LSAT GMAT GRE physics chemistry math biology graduate admissions academic advice ACT interview prep law school admissions test anxiety language learning premed MBA admissions career advice personal statements homework help AP exams creative writing MD study schedules test prep computer science Common Application summer activities history mathematics philosophy organic chemistry secondary applications economics supplements research 1L PSAT admissions coaching grammar law psychology statistics & probability legal studies ESL CARS SSAT covid-19 dental admissions logic games reading comprehension engineering USMLE calculus PhD admissions Spanish mentorship parents Latin biochemistry case coaching verbal reasoning DAT English literature STEM excel medical school political science skills AMCAS French Linguistics MBA coursework Tutoring Approaches academic integrity chinese letters of recommendation Anki DO Social Advocacy admissions advice algebra art history artificial intelligence astrophysics business cell biology classics diversity statement gap year genetics geometry kinematics linear algebra mechanical engineering mental health presentations quantitative reasoning study abroad technical interviews time management work and activities 2L DMD IB exams ISEE MD/PhD programs Sentence Correction adjusting to college algorithms amino acids analysis essay athletics business skills careers cold emails data science dental school finance first generation student functions graphing information sessions international students internships logic networking poetry resume revising science social sciences software engineering tech industry trigonometry writer's block 3L AAMC Academic Interest EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture argumentative writing art art and design schools art portfolios bacteriology bibliographies biomedicine brain teaser campus visits cantonese capacitors capital markets central limit theorem centrifugal force chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism escape velocity evolution executive function freewriting genomics harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite institutional actions integrated reasoning intermolecular forces intern investing investment banking lab reports linear maps mandarin chinese matrices mba medical physics meiosis microeconomics mitosis mnemonics music music theory nervous system neurology neuroscience object-oriented programming office hours operating systems