A brief primer on the secretory pathway

academics biology cell biology

The secretory pathway is arguably one of the most important pathways in the body. It deemed ‘Secretory’ primarily because it’s the pathway that controls how the cell secretes proteins int extracellular environment.

This pathway involves a few main players – the Endoplasmic reticulum (ER), Golgi Apparatus and the Lysosome. Let’s dig a bit deeper into the role and functions of each of these organelles below. 

After transcription (DNA --> RNA) in the nucleus and translation (RNA --> protein) in the ribosome, a new protein product is formed. What does this new protein product want to do next? It wants to become biologically active. How does it do so? By folding! What helps fold these proteins? Chaperones! Where does this folding take place? The endoplasmic reticulum! 

Proteins are imported into the ER using a signal sequence (seen on the newly made protein). This sequence is bound by a signal recognition particle (SRP). This creates a SRP – ribosomal protein complex. This SRP-ribosomal protein complex binds to the SRP receptor on the ER. This binding releases SRP and allows our signal sequence to enter the ER. 

The endoplasmic reticulum (rough) can be thought of as the main protein folding and quality control apparatus. It’s here that translated proteins from the ribosome can be twisted and turned to properly function. It’s also where mis/unfolded proteins can be dealt with (sent or tagged for degradation). 

After folding is complete in the ER, our folded protein exits the ER in lipid vesicles and head toward the cis side of the Golgi Apparatus. Here, proteins are modified and packaged into transport vesicles to their final destination (essentially, where they’ll be working in the cell). 

Digestive enzymes (proteins) are packaged and pinched off into a specific type of vesicle. That vesicle is a lysosome! These lysosomes are packed with a digestive punch and work to break down complex molecules inside the cell.  

For more practice, try understand what happens when certain parts of this pathway are disrupted. This will help drive home the interconnectedness of these organelles and larger function. Happy studying!

Vivian is a first year medical student at the Icahn School of Medicine at Mount Sinai. Previously, she earned her BS in Computational Biology with a Computer Information Science minor from Cornell University.

Comments

topicTopics
academics study skills medical school admissions MCAT SAT college admissions expository writing strategy English MD/PhD admissions writing LSAT physics GMAT GRE chemistry academic advice graduate admissions biology math interview prep law school admissions ACT language learning test anxiety personal statements premed career advice MBA admissions test prep AP exams homework help creative writing MD mathematics computer science study schedules Common Application history summer activities secondary applications research philosophy organic chemistry economics supplements admissions coaching 1L dental admissions grammar statistics & probability PSAT psychology law legal studies ESL reading comprehension CARS PhD admissions SSAT calculus covid-19 logic games engineering USMLE medical school mentorship Latin Spanish admissions advice biochemistry parents AMCAS case coaching verbal reasoning DAT English literature STEM dental school excel genetics political science skills French Linguistics MBA coursework Tutoring Approaches academic integrity astrophysics chinese classics freewriting gap year letters of recommendation mechanical engineering technical interviews units Anki DO Social Advocacy algebra amino acids art history artificial intelligence business careers cell biology cold emails data science diversity statement first generation student geometry graphing kinematics linear algebra mental health pre-dental presentations quantitative reasoning revising software engineering study abroad tech industry time management work and activities writer's block 2L AAMC DMD IB exams ISEE MD/PhD programs MMI Sentence Correction adjusting to college algorithms analysis essay argumentative writing athletics business skills executive function fellowships finance functions genomics infinite information sessions international students internships logic networking office hours outlining poetry proofs resume scholarships science social sciences trigonometry 3L ADHD Academic Interest ChatGPT EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian JD/MBA admissions Japanese Lagrange multipliers London MD vs PhD Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture art art and design schools art portfolios bacteriology bibliographies biomedicine boarding school brain teaser burnout campus visits cantonese capacitors capital markets central limit theorem centrifugal force chem/phys chemical engineering chess chromatography class participation climate change clinical experience community service competitions constitutional law consulting cover letters creative nonfiction curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism embryology entropy escape velocity evolution extracurriculars fundraising harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite series institutional actions integrated reasoning intermolecular forces