An astrophysics hack: knowing units versus memorizing equations

academics astrophysics physics units

Starting out in physics and astronomy can seem overwhelming due to the large amount of different topics covered in introductory courses. Sometimes it seems like every week we have a whole new list of equations to use in our homework. In many academic areas memorizing equations, like the Pythagorean theorem, is very useful for problem solving (and I agree, the Pythagorean theorem is one of those we should have burned in our brain if we work with mathematics.) But it turns out that memorizing astrophysics equations isn’t the best use of our limited time and is unnecessary because course instructors often allow equation sheets for exams.

So instead of spending time memorizing physics equations, I found that having fluency in my physics units helped me to solve problems accurately.  

A caveat: Nothing is more important than conceptual understanding. 

There’s no doubt that the foundation of doing well in any field is to understand its underlying concepts. It seems counterintuitive, but a person can have strong conceptual understanding while also having a weakness in problem solving. So in addition to conceptual understanding, what helps us solve problems? 

The hack: Know your units.

In one of my introductory physics courses, the professor stopped himself on the board mid-calculation and muttered, “Wait, no, my units don’t make sense.” He then erased a couple of lines, revised his work and continued. I realized that he was able to quickly catch his error because he was so fluent in the units. I took that lesson and made ‘knowing my units’ an important part of my study habits. This means having fluency in breaking down and combining units to make other units. For example, energy has a unit of Joule [J]. And a Joule is broken down into force (Newton) times distance (meter) with units of [Nm], and furthermore, force [N] breaks down into mass times acceleration [kg m/s2]. So if in my calculation I end up with the units [kg m2/s2], I know I’ve ended with energy [J]. Hopefully the problem was asking for energy. If not, I can now go back and see where I’ve made my error. 

This little hack really helped me, and it’s one I always suggest to my students.

Ana Maria earned her Bachelor's in Applied Computational Physics, graduating summa cum laude, from New York City College of Technology (CUNY). She next earned her PhD in Astronomy & Astrophysics from Harvard University. Ana Maria is now a Postdoctoral Fellow at Johns Hopkins University.

Comments

topicTopics
academics study skills medical school admissions MCAT SAT college admissions expository writing strategy English MD/PhD admissions writing LSAT physics GMAT GRE chemistry graduate admissions biology academic advice math law school admissions ACT interview prep language learning test anxiety personal statements premed career advice MBA admissions AP exams homework help test prep creative writing MD study schedules Common Application computer science mathematics summer activities history secondary applications philosophy organic chemistry research economics supplements 1L grammar statistics & probability PSAT admissions coaching dental admissions psychology law legal studies ESL CARS PhD admissions SSAT covid-19 logic games reading comprehension calculus engineering USMLE medical school mentorship Latin Spanish parents AMCAS admissions advice biochemistry case coaching verbal reasoning DAT English literature STEM excel political science skills French Linguistics MBA coursework Tutoring Approaches academic integrity astrophysics chinese classics dental school gap year genetics letters of recommendation mechanical engineering units Anki DO Social Advocacy algebra art history artificial intelligence business careers cell biology data science diversity statement first generation student freewriting geometry graphing kinematics linear algebra mental health presentations quantitative reasoning study abroad tech industry technical interviews time management work and activities 2L AAMC DMD IB exams ISEE MD/PhD programs MMI Sentence Correction adjusting to college algorithms amino acids analysis essay athletics business skills cold emails executive function fellowships finance functions genomics information sessions international students internships logic networking office hours poetry pre-dental proofs resume revising scholarships science social sciences software engineering trigonometry writer's block 3L Academic Interest EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian JD/MBA admissions Lagrange multipliers London MD vs PhD Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture argumentative writing art art and design schools art portfolios bacteriology bibliographies biomedicine brain teaser burnout campus visits cantonese capacitors capital markets central limit theorem centrifugal force chem/phys chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism entropy escape velocity evolution extracurriculars fundraising harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite institutional actions integrated reasoning intermolecular forces intern investing investment banking lab reports letter of continued interest linear maps mandarin chinese matrices mba