Embracing failure as a premedical student

academic advice premed
By Trey

Failure is an uncomfortable experience. Despite the knowledge that all humans are imperfect, when it inevitably happens to us, we feel shame, self-doubt, and even anger. This is especially true in premedical courses when we feel like there is so much riding on our academic performance. 

I will be the first to admit that the idea of learning from failure is not revolutionary. Friedrich Nietzsche famously put it into words: "That which does not kill us makes us stronger." Premeds today might be more familiar with Kelly Clarkson’s interpretation in her 2011 pop anthem. Even so, I believe that systematically assessing your failures in an academic setting is a critical strategy for becoming a better student. I have outlined five steps that helped me survive the premedical curriculum, and I have continued to use this approach in my first year of medical school.

Step 1: Learn to celebrate (or at least embrace) failure

There is an improv game called, “Danish Clapping.” I won’t bore you with the details of the game, but basically you find a partner and do a rhythmic set of three motions while facing each other. My instructor in college, Dan, added a specific element to the activity. If anyone messed up during the game, both partners had to celebrate verbally and physically. When I failed with my partner, I let out a “wooo!” and raised my hands in the air. Dan was teaching us to become more comfortable with failure. 

The lessons from the improv world are directly applicable to the classroom. You should expect to fail when encountering new information for the first time. It is natural to struggle through synthesis problems in organic chemistry and signal transduction pathways in biology. When you face difficulty with problems in the library or lab, try your best to embrace it. This is a chance for you to grow as a thinker and problem solver. 

Step 2: Reflect and identify failures in real time

My biggest tip for students struggling with their problem solving is to reflect on why you failed in real time. If you get a problem wrong, immediately think about what specifically you did wrong and what led you to make that mistake. Did you read the problem incorrectly? Did you misunderstand some important fact from lecture? Did you fail to consider alternative hypotheses? Once you know what you did wrong, jot it down in a spreadsheet, on a sticky note, or in a notebook. It should be easily accessible so you can reference your reflections. 

You (probably) won’t have the energy or time to come back to your problem later and reflect on what went wrong. In fact, it might be hard to remember what you did in the first place if you come back to your notes several days later.

A key assumption to all of this is that you are regularly practicing and applying your knowledge. To “fail,” you must test yourself. This could be doing practice problems in the back of the book or explaining a concept to a friend. So, get out there and do some practice because watching lectures and reading the textbook is not the way to make information stick. 

Step 3: Track your tendencies over time to recognize patterns

If you have successfully reflected on your failures in real time and documented what went wrong and why, it should be easy to track your tendencies. At first, it might be hard to notice patterns. Once you accumulate a couple of weeks of reflections, you will be able to identify what traps you tend to fall into when solving problems. It is essential to make reflecting on your failures a regular part of your studying, or you won’t have the information necessary to draw conclusions about your problem-solving hiccups.

Step 4: Highlight successes as well as failures

When I was applying this approach to my studying in my year-long post-baccalaureate program, I found myself feeling down at how much I was failing. I tried my best to embrace my failures, but it wasn’t enough to get over the feeling that I was constantly coming up short. Then, my friend recommended I also occasionally track the things I was doing correctly. I started a notebook for victories. While I didn’t document my thought process for every practice problem I got right, I found it was helpful to reflect on my successful problem solving when I was dealing with an especially difficult problem (read: genetics and immunology). 

Step 5: Apply what you have learned, and circle back as needed

By introducing systematic reflection into your studying, you should be able to identify your weaknesses and strengths and tailor your future problem solving accordingly. Embracing and documenting your failures is not easy, but it will pay off when you get to exam day. This is also a continuous process, so you might identify a failure, reflect on why it happened, and then make the same mistake a week later. Just start the cycle again and try your best not to repeat it. If you are attentive, I promise you will stop making the same mistake at some point.

These alterations to your studying will seem challenging and might require more time than simply blazing through practice problems. It also goes against our academic system that primarily rewards success. However, I found this approach incredibly helpful in my journey through the premedical coursework and I have faith that it will be helpful to you as well. Good luck out there, and listen to Kelly Clarkson’s “Stronger (What Doesn't Kill You)” when you need a pick-me-up.


academics study skills MCAT medical school admissions SAT expository writing college admissions English MD/PhD admissions GMAT LSAT GRE writing strategy chemistry physics math biology ACT graduate admissions language learning law school admissions test anxiety interview prep MBA admissions academic advice premed homework help personal statements AP exams creative writing MD career advice study schedules summer activities Common Application history test prep philosophy computer science secondary applications organic chemistry economics supplements PSAT admissions coaching grammar law statistics & probability psychology ESL research 1L CARS SSAT covid-19 legal studies logic games reading comprehension dental admissions mathematics USMLE Spanish calculus engineering parents Latin verbal reasoning DAT excel mentorship political science French Linguistics Tutoring Approaches academic integrity case coaching chinese AMCAS DO MBA coursework PhD admissions Social Advocacy admissions advice biochemistry classics diversity statement genetics geometry kinematics medical school mental health quantitative reasoning skills time management Anki English literature IB exams ISEE MD/PhD programs algebra algorithms art history artificial intelligence astrophysics athletics business business skills careers cold emails data science internships letters of recommendation poetry presentations resume science social sciences software engineering study abroad tech industry trigonometry work and activities 2L 3L Academic Interest DMD EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python STEM Sentence Correction Step 2 TMDSAS Zoom acids and bases amino acids analysis essay architecture argumentative writing brain teaser campus visits cantonese capacitors capital markets cell biology central limit theorem chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum demonstrated interest dental school distance learning electricity and magnetism enrichment european history executive function finance first generation student freewriting fun facts functions gap year genomics harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law induction information sessions institutional actions integrated reasoning intern international students investing investment banking lab reports logic mandarin chinese mba mechanical engineering medical physics meiosis microeconomics mitosis music music theory neurology neuroscience office hours operating systems organization pedagogy phrase structure rules plagiarism pre-dental proofs pseudocode psych/soc quantum mechanics resistors resonance revising scholarships school selection simple linear regression slide decks sociology software stem cells stereochemistry study spots synthesis teaching technical interviews transfer typology units virtual interviews writer's block writing circles