How to approximate the value of pi

academics mathematics
By Yael

I always tell my students not to be afraid to ask why. In so many parts of our lives, we are asked to defend our opinions and ideas—to offer evidence and to explain our thinking or reasoning. But sometimes, it feels this is missing from math education, especially in middle school and high school. Math becomes about memorizing formulas rather than about understanding how things work. So many times as students, we are told: “this works, it just does.” The thing is, that’s almost never the case. There are many types of explanations one might give: a formal proof, a derivation, enough data to extrapolate a pattern, or even just context for why something makes sense. But, to a question of, “why does this work?” very rarely should the answer be “it just does.”

In grade school math, perhaps few things are associated more with memorization than pi: there are competitions in many classrooms for who can memorize the most digits. When I first learned about pi, I was told it was the ratio between a circle’s circumference and diameter. I was told to accept that, and to memorize at least the first few digits. It did not even occur to me to wonder how we found that number.

In fact, there are many ways to approximate the value of pi that are accessible with math taught in traditional K-12 classrooms, and I want to share one with you.

Imagine inscribing a series of polygons inside a circle with radius 1. The more sides you add to your polygon, the closer you get to the circumference of your circle. Here, you can see a triangle (3 sides), square (4 sides), pentagon (5 sides) and hexagon (6 sides). We can imagine as we continue adding sides, our inscribed polygon will slowly start to look more and more like the circle.

So, if we can find a pattern in the lengths of the perimeters of the polygons, we can use that pattern to estimate the circumference of the circle. 

Let’s start by drawing a line from the center of our circle that is perpendicular to the side of each polygon. We have now created a right triangle within each polygon. Each has a hypotenuse of 1, and each has a different interior angle. 

We can use sine to solve for the leg of the triangle that lies on the perimeter of each polygon. Let’s call those sides x.

Now, let’s build each polygon’s perimeter out of those legs. There are 6 along the perimeter of the triangle, 8 along the perimeter of the square, 10 along the perimeter of the pentagon and 12 along the perimeter of the hexagon.

Our totals come out to:

Already, we can see a pattern emerging, but we are going to need to add a lot more sides to get anywhere close to a circle. Rather than repeating our method hundreds of times, let’s write a formula that does it for us. Let’s call the number of sides in our polygon n, and consider what we did in our first four cases.

In each case, we first created one right triangle with a different interior angle. That angle is simply 360/(2n). For a triangle, n=3, our angle was 360/(2*3) = 60. For a square,  n=4, our angle was 360/(2*4) = 45, and so on.

Next, to find our legs, we simply took the sine of that angle, and multiplied by the hypotenuse which is 1 in every case. So, for a polygon of n sides, the leg we are looking for has a measure of sin(360/2n) units.

Lastly, we simply counted how many of those legs made up the perimeter of our polygons. In each case, the number of legs around the perimeter is twice the number of sides. For a triangle, there were 6, for a square 8, and so on.

This leaves us with our final formula. For a polygon with n sides, the perimeter is: sin(360/2n) * 2n.

Let’s try plugging in a large number, like 1000. (Feel free to plug in larger numbers if  you’d like!) 

By this point, with 1000 sides, the perimeter of our polygon should be getting closer  to the circumference of our circle. Now, our radius was 1 and that makes our diameter 2, so if pi is the ratio of the circumference to our diameter, then

All circles are similar, so if this is the ratio for a circle of radius 1, it should be the ratio for all circles.

This explanation is based on Archimedes’ method of deriving pi, and can be made more formal. But even without calculus or anything beyond basic trigonometry, we no longer need to have faith in what someone else tells us: we can convince ourselves that pi–the ratio between a circle’s circumference and diameter–is approximately 3.14.

From trigonometric ratios, to the quadratic formula, to basic laws of exponents, to pi, there is always more to how something works than “it just does.” In my experience, not only is learning to ask why more productive than trying to memorize everything, it is more fun as well.

Yael earned a BA in Math and the History of Art and Architecture from Harvard College (magna cum laude, Phi Beta Kappa). In her senior year of college, she began the Harvard Teacher Fellows Program, through which she earned a Masters of Education from the Harvard Graduate School of Education.


academics study skills MCAT medical school admissions SAT college admissions expository writing English MD/PhD admissions writing LSAT GMAT strategy GRE physics chemistry math biology graduate admissions ACT law school admissions interview prep test anxiety language learning academic advice MBA admissions premed personal statements homework help career advice AP exams creative writing MD study schedules Common Application summer activities test prep history computer science philosophy organic chemistry secondary applications supplements economics PSAT admissions coaching grammar mathematics research law statistics & probability psychology 1L ESL CARS SSAT covid-19 dental admissions legal studies logic games reading comprehension USMLE engineering Spanish calculus parents Latin verbal reasoning DAT PhD admissions case coaching excel mentorship political science AMCAS French Linguistics MBA coursework Tutoring Approaches academic integrity chinese medical school Anki DO English literature Social Advocacy admissions advice algebra astrophysics biochemistry business classics diversity statement genetics geometry kinematics mental health presentations quantitative reasoning skills study abroad time management work and activities IB exams ISEE MD/PhD programs STEM adjusting to college algorithms art history artificial intelligence athletics business skills careers cold emails data science functions gap year international students internships letters of recommendation logic mechanical engineering poetry resume science social sciences software engineering tech industry technical interviews trigonometry 2L 3L AAMC Academic Interest DMD EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python Sentence Correction Step 2 TMDSAS Taylor Series Zoom acids and bases amino acids analysis essay architecture argumentative writing art art and design schools art portfolios biomedicine brain teaser campus visits cantonese capacitors capital markets cell biology central limit theorem centrifugal force chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dental school dimensional analysis distance learning electric engineering electricity and magnetism enrichment escape velocity european history executive function finance first generation student freewriting fun facts genomics graphing harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law induction infinite information sessions institutional actions integrated reasoning intern investing investment banking lab reports linear algebra linear maps mandarin chinese matrices mba medical physics meiosis microeconomics mitosis music music theory neurology neuroscience office hours operating systems organization pedagogy phrase structure rules plagiarism potential energy pre-dental proofs pseudocode psych/soc qualifying exams quantum mechanics relativity