The Pythagorean Theorem plays an essential role in many facets of math from Euclidean Geometry to complex numbers to trigonometry. Today we’ll explore one of its many proofs.

We normally think about the Pythagorean Theorem as a description of the relationship between lengths (specifically in a right triangle), but what if, instead of lengths, we thought about it as a description of the relationship between areas?

Let’s start with the following figure:

Screen Shot 2022-07-12 at 12.08.22 PMHere we have two squares placed side by side. Our goal will be to cut these squares up into pieces and rearrange the pieces such that they form a new, larger square. If we can do this, we will have created a new square with an area equal to the sum of the areas of the two original squares. (Hopefully this should ring a bell and relate back to the Pythagorean theorem).

First try this on your own, and if you’re still stuck after a few minutes, read on!

Proving Congruency

Our first step will be to add a point (let’s call it P) to DC such that DP=CE. Now let’s create line segments AP and PF. What do we know about these two segments? Why?

Screen Shot 2022-07-12 at 12.09.20 PM

It turns out that AP and PF are congruent! To justify this, let’s look at triangles ADP and FEP. If we can show that the triangles are congruent, then we will have proven that AP and PF are congruent.

We chose point P such that DP=CE. Because GFEC is a square, CE=FE. Thus, by the transitive property, DP=FE. 

We also know that DE=DC+CE and DE=DP+PE. Because DP=CE, we can replace DP with CE in the prior equation to give us DE=CE+PE. From this it follows that DE-CE=PE and DE-CE=DC. Again, by the transitive property, PE=DC. Because ABCD is a square, PE=AD. 

Angles ADP and FEC are both right angles, so they are congruent, thus by SAS, ADP and FEP are congruent. 

If you’re confused at this point, go back and give the two squares actual dimensions (say CE=3 and DC=4), and try to come to the same conclusion about AP and PF; then come back and work your way through the generalized proof. Or, take a look at this color coded figure, and see if it helps.

Screen Shot 2022-07-12 at 12.10.04 PM

Creating the square

Look at the figure again… did you notice that AP creates the hypotenuse of a triangle with side lengths equivalent to the side lengths of our two original squares? We’ll store this information in our back pocket for now and continue our original task: cutting up these squares to form a new square.

First we’ll remove triangle PFE, rotate it 90 degrees clockwise and move it upwards so that FE aligns with GF. Here’s what it will look like:

Screen Shot 2022-07-12 at 12.11.13 PM

We will manipulate triangle ADP similarly so that AD lines up with AB:

Screen Shot 2022-07-12 at 12.11.42 PMProving the theorem

We have now created a new shape (in red) whose area is the sum of our two original squares AND its side length is the hypotenuse of a right triangle with the other sides congruent to the sides of the two original squares.

What do we have left to show to complete our proof? See if you can finish the proof on your own!

To prove the Pythagorean theorem with finality, we need to show that when we rotate and translate the triangles, they do indeed create a square. We will first need to show that P’ is the same point for both FGP’ and P’BA. In other words, we need to show that our rotate and translated triangles do indeed meet at one point. 

Mathematically, this means showing that the image of P’B+BG= the image of GB ie, DP+BG=PE

We’ll start by manipulating BG, expressing it as differences of other segments, and replacing these with segments we have previously shown to be congruent to get:


Going back to our original two squares, we have


Thus DP+BG=DC, and therefore: DP+BG=PE

When we rotate ADP and stack DP onto BG, we then know that DG will be congruent to the rotated segment PE, which gets stacked onto GF. Therefore, our two rotated triangles will intersect in the same point P’

We have now shown that there exists a quadrilateral PAP’F, and our prior work (in the proving congruency section) tells us that this quadrilateral has four congruent sides. To prove that it is a square, we need to show that it has one right angle.

Because there are 180 degrees in a triangle and ADP is right in D by construction, angles DAP and APD must add to 90 degrees. Because triangles ADP and PEF are congruent (as previously shown), angles DAP and EPF are congruent. Thus angles APD and FPE must add to 90, and therefore the measure of angle APF must be 90 degrees because APD, APF, and FPE are supplementary.

Therefore, AP’FP is a square and its area is the sum of the areas of ABCD and GFEC. 

From this, it follows that AD2+CE2=AP2 and so AD2+DP2=AP2

For any right triangle, the sum of the squares of the two shorter sides will equal the square of the hypotenuse.

Raphael attended Yale University, where he earned a BA in Musicology and graduated cum laude. After Yale, he completed a Masters of Music in Voice and Opera at McGill University, while tutoring math privately outside of his classical training.


academics study skills MCAT medical school admissions SAT college admissions expository writing English strategy MD/PhD admissions writing LSAT GMAT physics GRE chemistry biology math graduate admissions academic advice law school admissions ACT interview prep test anxiety language learning career advice premed MBA admissions personal statements homework help AP exams creative writing MD test prep study schedules computer science Common Application mathematics summer activities history philosophy secondary applications organic chemistry economics supplements research grammar 1L PSAT admissions coaching law psychology statistics & probability dental admissions legal studies ESL CARS PhD admissions SSAT covid-19 logic games reading comprehension calculus engineering USMLE mentorship Spanish parents Latin biochemistry case coaching verbal reasoning AMCAS DAT English literature STEM admissions advice excel medical school political science skills French Linguistics MBA coursework Tutoring Approaches academic integrity astrophysics chinese gap year genetics letters of recommendation mechanical engineering Anki DO Social Advocacy algebra art history artificial intelligence business careers cell biology classics data science dental school diversity statement geometry kinematics linear algebra mental health presentations quantitative reasoning study abroad tech industry technical interviews time management work and activities 2L DMD IB exams ISEE MD/PhD programs Sentence Correction adjusting to college algorithms amino acids analysis essay athletics business skills cold emails finance first generation student functions graphing information sessions international students internships logic networking poetry proofs resume revising science social sciences software engineering trigonometry units writer's block 3L AAMC Academic Interest EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian JD/MBA admissions Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture argumentative writing art art and design schools art portfolios bacteriology bibliographies biomedicine brain teaser campus visits cantonese capacitors capital markets central limit theorem centrifugal force chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism escape velocity evolution executive function fellowships freewriting genomics harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite institutional actions integrated reasoning intermolecular forces intern investing investment banking lab reports letter of continued interest linear maps mandarin chinese matrices mba medical physics meiosis microeconomics mitosis mnemonics music music theory nervous system