Linkage and association mapping in genetic analysis

academics biology genetics
By Ryan R.

When geneticists want to see how closely related two genes are, they have two main ways of doing so: linkage analysis and association mapping. 

Linkage analyses use observation of phenotypes, or traits that can be observed, that are built into pedigrees, where the inheritance of specific traits are tracked in a family over time. Linkage refers to the fact that genetic markers or alleles of a gene that are close to each other on a chromosome generally segregate together. When alleles recombine (shuffle over) during meiosis, they are able to be inherited with a different chromosome, but this happens less often if the genes are closer to each other on the same chromosome. So, genetic markers (or alleles) that lie relatively far apart on a chromosome will undergo recombination more frequently than genetic markers that lie close to each other. These data are then made into genetic maps that correspond to the distance between different genes on a chromosome.  

Unlike linkage mapping, association mapping uses the newer technologies of DNA sequencing that allow scientists to identify many specific markers on a chromosome. Doing this over and over, and associating it with information from pedigrees, we can use our sequencing information to connect specific traits with a given sequence of DNA. Association mapping is generally carried out in the context of a whole genome, and this kind of study is called a Genome Wide Association Study (GWAS). Sequencing an entire genome is expensive, so instead, single nucleotide polymorphisms (SNPs) are used as molecular markers. SNPs are single sequence differences in DNA that are associated with a trait. For example, having an adenine at a given position in your DNA can be a SNP for having sickle cell anemia. Doing this thousands of times, with patients and controls, geneticists can identify individual or multiple genes responsible for traits, and start to find the locations of those genes on the chromosome. Unlike linkage analysis, which gives relative distances of genes, association mapping allows us to find the absolute position of genetic information.

Ryan graduated from Yale College with honors in Molecular, Cellular, and Developmental Biology, and completed the Multidisciplinary Academic Program in Global Health. He is currently a student at Harvard Medical School, and hopes to pursue a career in infectious diseases.

Comments

topicTopics
academics study skills medical school admissions MCAT SAT college admissions expository writing strategy English MD/PhD admissions writing LSAT physics GMAT GRE chemistry academic advice biology graduate admissions math law school admissions ACT interview prep language learning test anxiety personal statements premed career advice MBA admissions AP exams homework help test prep creative writing MD computer science mathematics study schedules Common Application summer activities history secondary applications philosophy research organic chemistry economics supplements 1L grammar statistics & probability PSAT admissions coaching dental admissions psychology law legal studies ESL reading comprehension CARS PhD admissions SSAT covid-19 logic games calculus engineering USMLE medical school mentorship Latin Spanish parents AMCAS admissions advice biochemistry case coaching verbal reasoning DAT English literature STEM excel genetics political science skills French Linguistics MBA coursework Tutoring Approaches academic integrity astrophysics chinese classics dental school gap year letters of recommendation mechanical engineering technical interviews units Anki DO Social Advocacy algebra art history artificial intelligence business careers cell biology data science diversity statement first generation student freewriting geometry graphing kinematics linear algebra mental health presentations quantitative reasoning software engineering study abroad tech industry time management work and activities 2L AAMC DMD IB exams ISEE MD/PhD programs MMI Sentence Correction adjusting to college algorithms amino acids analysis essay argumentative writing athletics business skills cold emails executive function fellowships finance functions genomics information sessions international students internships logic networking office hours poetry pre-dental proofs resume revising scholarships science social sciences trigonometry writer's block 3L Academic Interest EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian JD/MBA admissions Japanese Lagrange multipliers London MD vs PhD Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture art art and design schools art portfolios bacteriology bibliographies biomedicine brain teaser burnout campus visits cantonese capacitors capital markets central limit theorem centrifugal force chem/phys chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism embryology entropy escape velocity evolution extracurriculars fundraising harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite institutional actions integrated reasoning intermolecular forces intern investing investment banking lab reports letter of continued interest linear maps mandarin chinese