Linkage and association mapping in genetic analysis

academics biology genetics
By Ryan R.

When geneticists want to see how closely related two genes are, they have two main ways of doing so: linkage analysis and association mapping. 

Linkage analyses use observation of phenotypes, or traits that can be observed, that are built into pedigrees, where the inheritance of specific traits are tracked in a family over time. Linkage refers to the fact that genetic markers or alleles of a gene that are close to each other on a chromosome generally segregate together. When alleles recombine (shuffle over) during meiosis, they are able to be inherited with a different chromosome, but this happens less often if the genes are closer to each other on the same chromosome. So, genetic markers (or alleles) that lie relatively far apart on a chromosome will undergo recombination more frequently than genetic markers that lie close to each other. These data are then made into genetic maps that correspond to the distance between different genes on a chromosome.  

Unlike linkage mapping, association mapping uses the newer technologies of DNA sequencing that allow scientists to identify many specific markers on a chromosome. Doing this over and over, and associating it with information from pedigrees, we can use our sequencing information to connect specific traits with a given sequence of DNA. Association mapping is generally carried out in the context of a whole genome, and this kind of study is called a Genome Wide Association Study (GWAS). Sequencing an entire genome is expensive, so instead, single nucleotide polymorphisms (SNPs) are used as molecular markers. SNPs are single sequence differences in DNA that are associated with a trait. For example, having an adenine at a given position in your DNA can be a SNP for having sickle cell anemia. Doing this thousands of times, with patients and controls, geneticists can identify individual or multiple genes responsible for traits, and start to find the locations of those genes on the chromosome. Unlike linkage analysis, which gives relative distances of genes, association mapping allows us to find the absolute position of genetic information.

Comments

topicTopics
academics study skills MCAT medical school admissions SAT expository writing college admissions English MD/PhD admissions GRE GMAT LSAT chemistry writing strategy math physics ACT biology language learning test anxiety graduate admissions law school admissions MBA admissions interview prep homework help creative writing AP exams MD study schedules summer activities history personal statements academic advice career advice premed philosophy secondary applications Common Application computer science organic chemistry ESL PSAT economics grammar test prep admissions coaching law statistics & probability supplements psychology SSAT covid-19 legal studies 1L CARS logic games reading comprehension Spanish USMLE calculus dental admissions parents research Latin engineering verbal reasoning DAT excel mathematics political science French Linguistics Tutoring Approaches chinese DO MBA coursework Social Advocacy academic integrity case coaching classics diversity statement genetics geometry kinematics medical school skills IB exams ISEE MD/PhD programs PhD admissions algebra astrophysics athletics biochemistry business business skills careers data science letters of recommendation mental health mentorship quantitative reasoning social sciences software engineering trigonometry work and activities 2L 3L Academic Interest Anki EMT English literature FlexMed Fourier Series Greek Italian Pythagorean Theorem STEM Sentence Correction Zoom algorithms amino acids analysis essay architecture art history artificial intelligence cantonese capacitors capital markets cell biology central limit theorem chemical engineering chromatography climate change clinical experience cold emails community service constitutional law curriculum dental school distance learning enrichment european history finance first generation student fun facts functions gap year harmonics health policy history of medicine history of science information sessions institutional actions integrated reasoning intern international students internships investing investment banking logic mandarin chinese mba meiosis mitosis music music theory neurology operating systems phrase structure rules plagiarism poetry pre-dental presentations proofs pseudocode school selection simple linear regression sociology software study abroad teaching tech industry transfer typology units virtual interviews writing circles