Relativity: from Galileo to Einstein

academics physics relativity
By Zach H.

Imagine sitting in a car and pressing the gas. You can tell you're moving since you feel the car's acceleration and see things moving around you. Once you're traveling at a constant velocity, you no longer feel the acceleration but see the outside world moving around you. 

Let's take this thought experiment further: imagine yourself moving at a constant velocity inside a black box. Can you tell if you're moving? You no longer have outside clues that you're moving, such as trees whipping by. Perhaps you could perform some physical experiments to gain some insight. It turns out that there's no way for you to conclude that you're moving! Any experiment you perform inside the black box traveling at a constant velocity will give the same results as if the black box were at rest. The black box is what's known as an inertial frame of reference. The laws of physics are the same in all inertial frames of reference. Galileo was the first to notice this remarkable symmetry of nature, referred to today as Galilean relativity.

In the early 1900s, Albert Einstein proposed that if we're sitting inside a black box and can't tell whether we're at rest or moving with a constant velocity, why should light be able to tell either? More precisely, he postulated that the speed of light is the same in all inertial frames of reference. This notion constitutes Einstein's famous special theory of relativity and stands in stark contrast with Galilean relativity. Unsurprisingly, when you're at rest and shine a laser, you will always find that the emitted light travels at the speed of light. But even if you were moving near the speed of light relative to an outside observer and shining the same laser, you and the outside observer would find that the emitted light travels at the same rate—the speed of light.

As a consequence, space and time cannot be absolute. If you're traveling near the speed of light, you would appear flattened in your direction of motion to an outside observer at rest. Moreover, you would find that time passes slower for you than for the outside observer at rest. These phenomena are referred to as length contraction and time dilation, respectively, and highlight that space and time are, in fact, deeply connected entities, forming what is known as spacetime. Motivated by similar thought experiments, Einstein incorporated gravity into his theory of relativity and concluded that mass and energy warp ambient spacetime. Gravity then arises as the motion of objects through curved spacetime. General relativity has predicted several phenomena that are not justifiable with classical physics, including black holes.

Comments

topicTopics
academics study skills MCAT medical school admissions SAT college admissions expository writing English MD/PhD admissions writing LSAT GMAT strategy GRE physics chemistry math biology graduate admissions ACT law school admissions interview prep test anxiety language learning academic advice MBA admissions premed personal statements homework help career advice AP exams creative writing MD study schedules Common Application summer activities test prep history computer science philosophy organic chemistry secondary applications supplements economics PSAT admissions coaching grammar mathematics research law statistics & probability psychology 1L ESL CARS SSAT covid-19 dental admissions legal studies logic games reading comprehension USMLE engineering Spanish calculus parents Latin verbal reasoning DAT PhD admissions case coaching excel mentorship political science AMCAS French Linguistics MBA coursework Tutoring Approaches academic integrity chinese medical school Anki DO English literature Social Advocacy admissions advice algebra astrophysics biochemistry business classics diversity statement genetics geometry kinematics mental health presentations quantitative reasoning skills study abroad time management work and activities IB exams ISEE MD/PhD programs STEM adjusting to college algorithms art history artificial intelligence athletics business skills careers cold emails data science functions gap year international students internships letters of recommendation logic mechanical engineering poetry resume science social sciences software engineering tech industry technical interviews trigonometry 2L 3L AAMC Academic Interest DMD EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python Sentence Correction Step 2 TMDSAS Taylor Series Zoom acids and bases amino acids analysis essay architecture argumentative writing art art and design schools art portfolios biomedicine brain teaser campus visits cantonese capacitors capital markets cell biology central limit theorem centrifugal force chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dental school dimensional analysis distance learning electric engineering electricity and magnetism enrichment escape velocity european history executive function finance first generation student freewriting fun facts genomics graphing harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law induction infinite information sessions institutional actions integrated reasoning intern investing investment banking lab reports linear algebra linear maps mandarin chinese matrices mba medical physics meiosis microeconomics mitosis music music theory neurology neuroscience office hours operating systems organization pedagogy phrase structure rules plagiarism potential energy pre-dental proofs pseudocode psych/soc qualifying exams quantum mechanics relativity