The magic of induction

academics induction mathematics

What is the sum of the first n positive integers? Phrased mathematically: 1 + 2 + 3 … + n -1 + n = ?. The answer, it turns out, is n * (n + 1) / 2. How do we show this is true though? How do we prove this?

One way is to dive head first into the sum and manipulate it so that we arrive at the answer. What can we do with: 1 + 2 +… + n -1 + n ? We can pair opposite sides of this sum and add those! 

1 - - - n = n + 1

2 - - - (n - 1) = n + 1

3 - - - (n – 2) = n + 1

.

.

.

n/2 - - - (n/2 + 1) = n + 1

Note, these all add to n + 1. And there are n/2 pairs! That gives us a total of n/2 * (n+1) = n(n+1)/2 !

At this point, some readers might be thinking: “Wait… what if n is odd? Then we won’t be able to pair all the numbers up.” Good point. If n is odd, we’ll have the middle number left over. But, the middle number will be (n + 1)/2. And, there will only be (n – 1)/2 pairs. So, the total remains the same.

(End Proof)

Whew, that was a little tedious and took some ingenuity.

Notice, with the above technique, we actually derived the answer. But, we were given the answer to start with! Is there a way to show a formula is true without deriving it? Cue, induction!

Induction

Induction is a technique for proving that a formula is true for all positive integers. It asks us to show that a formula has a particular property: if the formula is true for some number (call it k), it is also true for the next number, (k + 1). After this, all we need to do is show that the formula is true for k = 1. What follows is magic. Because the formula is true for k = 1, it is also true for k+1 = 2. Then, because it's true for 2, it's true for 3, and so on. Induction.

Let's try this out on our formula for the sum of the first n positive integers.

Step 1: Show that if the formula is true for some number k, it’s also true for the next number, k+1.

 

Imagine that for some number k, 1 + 2 + 3 … + k-1 + k = k(k + 1)/2. Imagine that this is true. Given this, does 1 + 2 … + k-1 + k + k+1 = (k + 1)(k + 2)/2 ? That is, is the formula true for k+1? 

What can we do with 1 + 2 … + k-1 + k + k+1 ? We can substitute in the formula for the sum of the first k numbers! So, 1 + 2 … + k-1 + k + k+1 = k(k + 1)/2 + k+1 = k(k + 1)/2 + 2(k + 1)/2 = (k+2)(k+1)/2. 

Done!

Step 2: Show that the formula is true for k = 1.

 

This’ll be short and sweet. What is the sum of the first 1 number? 1. Does this = 1 * (1 + 1)/2 = 1 * (2)/2 = 1. Yes.

To conclude, because the formula is true for k = 1, it’s true for k + 1 = 2. And because it’s true for 2, it’s true for 3, and so on.

(End proof)

Wow, I don’t know about you, but that felt like no work compared to the first proof. That’s what I call magic.

In conclusion

Induction is even more powerful when applied to more complicated formulas like the sum of the first n cubes, which require sophisticated techniques to derive.

I learned induction in high school and used it mechanically for years before I fully understood and appreciated it. Now, I honestly feel like it’s one of the most awesome things I’ve ever learned. I hope I conveyed some of my excitement for induction to you in this article. Keep proving.

Madhav graduated with a degree in Computer Science with Honors from Caltech. After graduating, he worked at Oracle as a software engineer; more recently, he joined BallerTV, a fast growing sports-streaming startup, as a full-stack engineer.

Comments

topicTopics
academics study skills medical school admissions MCAT SAT college admissions expository writing strategy English MD/PhD admissions writing LSAT physics GMAT GRE chemistry academic advice graduate admissions biology math interview prep law school admissions ACT language learning test anxiety personal statements premed career advice MBA admissions AP exams homework help test prep creative writing MD computer science mathematics study schedules Common Application history summer activities secondary applications research philosophy organic chemistry economics supplements admissions coaching 1L dental admissions grammar statistics & probability PSAT psychology law legal studies ESL reading comprehension CARS PhD admissions SSAT covid-19 logic games calculus engineering USMLE medical school mentorship Latin Spanish biochemistry parents AMCAS admissions advice case coaching verbal reasoning DAT English literature STEM excel genetics political science skills French Linguistics MBA coursework Tutoring Approaches academic integrity astrophysics chinese classics dental school freewriting gap year letters of recommendation mechanical engineering technical interviews units Anki DO Social Advocacy algebra amino acids art history artificial intelligence business careers cell biology cold emails data science diversity statement first generation student geometry graphing kinematics linear algebra mental health pre-dental presentations quantitative reasoning software engineering study abroad tech industry time management work and activities writer's block 2L AAMC DMD IB exams ISEE MD/PhD programs MMI Sentence Correction adjusting to college algorithms analysis essay argumentative writing athletics business skills executive function fellowships finance functions genomics infinite information sessions international students internships logic networking office hours poetry proofs resume revising scholarships science social sciences trigonometry 3L Academic Interest ChatGPT EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian JD/MBA admissions Japanese Lagrange multipliers London MD vs PhD Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture art art and design schools art portfolios bacteriology bibliographies biomedicine boarding school brain teaser burnout campus visits cantonese capacitors capital markets central limit theorem centrifugal force chem/phys chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters creative nonfiction curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism embryology entropy escape velocity evolution extracurriculars fundraising harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite series institutional actions integrated reasoning intermolecular forces intern investing investment banking