The magic of induction

academics induction mathematics

What is the sum of the first n positive integers? Phrased mathematically: 1 + 2 + 3 … + n -1 + n = ?. The answer, it turns out, is n * (n + 1) / 2. How do we show this is true though? How do we prove this?

One way is to dive head first into the sum and manipulate it so that we arrive at the answer. What can we do with: 1 + 2 +… + n -1 + n ? We can pair opposite sides of this sum and add those! 

1 - - - n = n + 1

2 - - - (n - 1) = n + 1

3 - - - (n – 2) = n + 1

.

.

.

n/2 - - - (n/2 + 1) = n + 1

Note, these all add to n + 1. And there are n/2 pairs! That gives us a total of n/2 * (n+1) = n(n+1)/2 !

At this point, some readers might be thinking: “Wait… what if n is odd? Then we won’t be able to pair all the numbers up.” Good point. If n is odd, we’ll have the middle number left over. But, the middle number will be (n + 1)/2. And, there will only be (n – 1)/2 pairs. So, the total remains the same.

(End Proof)

Whew, that was a little tedious and took some ingenuity.

Notice, with the above technique, we actually derived the answer. But, we were given the answer to start with! Is there a way to show a formula is true without deriving it? Cue, induction!

Induction

Induction is a technique for proving that a formula is true for all positive integers. It asks us to show that a formula has a particular property: if the formula is true for some number (call it k), it is also true for the next number, (k + 1). After this, all we need to do is show that the formula is true for k = 1. What follows is magic. Because the formula is true for k = 1, it is also true for k+1 = 2. Then, because it's true for 2, it's true for 3, and so on. Induction.

Let's try this out on our formula for the sum of the first n positive integers.

Step 1: Show that if the formula is true for some number k, it’s also true for the next number, k+1.

 

Imagine that for some number k, 1 + 2 + 3 … + k-1 + k = k(k + 1)/2. Imagine that this is true. Given this, does 1 + 2 … + k-1 + k + k+1 = (k + 1)(k + 2)/2 ? That is, is the formula true for k+1? 

What can we do with 1 + 2 … + k-1 + k + k+1 ? We can substitute in the formula for the sum of the first k numbers! So, 1 + 2 … + k-1 + k + k+1 = k(k + 1)/2 + k+1 = k(k + 1)/2 + 2(k + 1)/2 = (k+2)(k+1)/2. 

Done!

Step 2: Show that the formula is true for k = 1.

 

This’ll be short and sweet. What is the sum of the first 1 number? 1. Does this = 1 * (1 + 1)/2 = 1 * (2)/2 = 1. Yes.

To conclude, because the formula is true for k = 1, it’s true for k + 1 = 2. And because it’s true for 2, it’s true for 3, and so on.

(End proof)

Wow, I don’t know about you, but that felt like no work compared to the first proof. That’s what I call magic.

In conclusion

Induction is even more powerful when applied to more complicated formulas like the sum of the first n cubes, which require sophisticated techniques to derive.

I learned induction in high school and used it mechanically for years before I fully understood and appreciated it. Now, I honestly feel like it’s one of the most awesome things I’ve ever learned. I hope I conveyed some of my excitement for induction to you in this article. Keep proving.

Madhav graduated with a degree in Computer Science with Honors from Caltech. After graduating, he worked at Oracle as a software engineer; more recently, he joined BallerTV, a fast growing sports-streaming startup, as a full-stack engineer.

Comments

topicTopics
academics study skills MCAT medical school admissions SAT expository writing college admissions English MD/PhD admissions strategy writing LSAT GMAT GRE physics chemistry math biology graduate admissions ACT academic advice interview prep law school admissions test anxiety language learning premed MBA admissions career advice personal statements homework help AP exams creative writing MD study schedules test prep Common Application computer science summer activities history philosophy mathematics organic chemistry secondary applications economics supplements research 1L PSAT admissions coaching grammar law psychology statistics & probability legal studies ESL CARS SSAT covid-19 dental admissions logic games reading comprehension engineering USMLE calculus PhD admissions Spanish mentorship parents Latin biochemistry case coaching verbal reasoning DAT English literature STEM excel medical school political science AMCAS French Linguistics MBA coursework Tutoring Approaches academic integrity chinese letters of recommendation Anki DO Social Advocacy admissions advice algebra astrophysics business classics diversity statement genetics geometry kinematics linear algebra mechanical engineering mental health presentations quantitative reasoning skills study abroad technical interviews time management work and activities 2L DMD IB exams ISEE MD/PhD programs Sentence Correction adjusting to college algorithms amino acids analysis essay art history artificial intelligence athletics business skills careers cold emails data science dental school finance first generation student functions gap year information sessions international students internships logic networking poetry resume revising science social sciences software engineering tech industry trigonometry 3L AAMC Academic Interest EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture argumentative writing art art and design schools art portfolios bibliographies biomedicine brain teaser campus visits cantonese capacitors capital markets cell biology central limit theorem centrifugal force chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism escape velocity evolution executive function freewriting genomics graphing harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite institutional actions integrated reasoning intermolecular forces intern investing investment banking lab reports linear maps mandarin chinese matrices mba medical physics meiosis microeconomics mitosis mnemonics music music theory nervous system neurology neuroscience object-oriented programming office hours operating systems organization outlining