The advantage in fuel economy that comes from driving a hybrid-electric car instead of a non-hybrid has not one major contributing factor, but three. Even if you don’t drive a plug-in hybrid, these innovations drastically improve the vehicle’s efficiency using clever applications of physics and optimization. 

Regenerative Braking

Likely the most familiar method of reducing loss in hybrid vehicles is regenerative braking. It uses the same principles that drive the car forward, except energy flows from the wheels to the battery instead of from the battery from the wheels. 

When the spindle of a motor is spun, its interior magnet and coils rotating relative to each other generates a voltage, or electromotive force (EMF). When the voltage from the battery is applied to the motor, spinning it, the EMF generated by the coil works in the opposite direction of the applied voltage. Known as back EMF, this is what causes the perceived ‘resistance’ of the motor. If the spindle is held in place, there will be no back EMF, and thus no resistance (AKA a short circuit). This is why a motor overheats if the mechanical load on the spindle is too high. Conversely, if the spindle is forced to rotate faster than the applied voltage would cause it to, the back EMF will be higher than the applied voltage. Electrical current will flow in the opposite direction, charging the battery. Instead of using a friction-based hydraulic brake to slow the vehicle, regenerative uses the motion of the wheels to spin the motor. The motor is able to extract energy from the wheels, slowing them down, and use it to charge the battery. Otherwise, the energy from the moving wheels would be dissipated as friction. Regenerative braking also has the side benefit of not wearing down the brake pads.

Optimal Engine Speed

In a non-hybrid vehicle, the most efficient driving speed is typically around 50 miles per hour. Generally speaking, the engine itself has a power level where it is most efficient, which depends on the specifics of its design and construction. However, it is air resistance that limits the efficiency of vehicles at high speeds. As air resistance applies a force that is proportional to the square of the velocity, fuel consumption increases drastically at high speeds. Since the internal combustion engine is the non-hybrid’s only source of power, the engine has no choice but to operate at the driver’s desired power level. With a hybrid, the engine can always run at its most efficient because the battery is there to provide additional power to the wheels if needed. If the energy produced by the engine at its most efficient level is more than needed at the moment, the excess can be used to charge the battery for future use. If the battery is sufficiently charged, the engine can turn off and the car can run on only battery power.

Atkinson Cycle

In many hybrids, the traditional Otto cycle (intake – compression – spark – power – exhaust) in the internal combustion is not used. Instead, the intake valve is held open longer than normal, which essentially shortens the compression stroke. Lengthening the power stroke relative to the compression stroke allows for more heat and pressure rejection from the cylinder during the power stroke. Essentially, this enables every bit of energy from the compression and spark to be utilized. It can also be thought of as decreasing the pressure in the cylinder during the compression stroke, which reduces the input force required (force = pressure * area), boosting efficiency. Unfortunately, this process greatly reduces available power, so it is not used unless there is a hybrid battery to provide additional power when needed. 

In non-hybrid vehicles, the energy saved by the preceding three methods would be wasted as heat. While it is true that energy cannot be destroyed, it can be dissipated, or converted into a non-useful form. In thermodynamics, useful energy is known as exergy, which CAN be destroyed. In any non-reversible (or non-ideal) process, the useful energy is decreased, and exergy is destroyed. Conversely, entropy, which is a measure of heat-based disorder and a non-recoverable form of energy, is increased. Reducing the amount of exergy destroyed means less fuel use, less greenhouse gas emitted from your tail pipe, and less frequent trips to the gas station.

James currently works as an engineer for Nuvera, a hydrogen fuel cell company in Massachusetts. Previously, he graduated from Syracuse University with an MS in Mechanical and Aerospace Engineering and a BS in Mechanical Engineering (summa cum laude).


academics study skills MCAT medical school admissions SAT expository writing college admissions English MD/PhD admissions writing LSAT GMAT strategy GRE physics chemistry math biology graduate admissions ACT law school admissions test anxiety interview prep language learning academic advice MBA admissions premed personal statements homework help career advice AP exams creative writing MD study schedules Common Application summer activities test prep history computer science philosophy organic chemistry secondary applications supplements economics PSAT admissions coaching grammar mathematics research law statistics & probability psychology 1L ESL CARS SSAT covid-19 dental admissions legal studies logic games reading comprehension USMLE engineering Spanish calculus parents Latin verbal reasoning DAT PhD admissions case coaching excel mentorship political science AMCAS French Linguistics MBA coursework Tutoring Approaches academic integrity chinese medical school Anki DO English literature Social Advocacy admissions advice algebra astrophysics biochemistry business classics diversity statement genetics geometry kinematics mental health presentations quantitative reasoning skills study abroad time management work and activities IB exams ISEE MD/PhD programs STEM adjusting to college algorithms art history artificial intelligence athletics business skills careers cold emails data science functions gap year international students internships letters of recommendation logic mechanical engineering poetry resume science social sciences software engineering tech industry technical interviews trigonometry 2L 3L AAMC Academic Interest DMD EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python Sentence Correction Step 2 TMDSAS Taylor Series Zoom acids and bases amino acids analysis essay architecture argumentative writing art art and design schools art portfolios biomedicine brain teaser campus visits cantonese capacitors capital markets cell biology central limit theorem centrifugal force chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dental school dimensional analysis distance learning electric engineering electricity and magnetism enrichment escape velocity european history executive function finance first generation student freewriting fun facts genomics graphing harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law induction infinite information sessions institutional actions integrated reasoning intern investing investment banking lab reports linear algebra linear maps mandarin chinese matrices mba medical physics meiosis microeconomics mitosis music music theory neurology neuroscience office hours operating systems organization pedagogy phrase structure rules plagiarism potential energy pre-dental proofs pseudocode psych/soc qualifying exams quantum mechanics relativity