A painless introduction to VSEPR theory

academics chemistry

Today we will discuss VSEPR (pronounced “vesper”), which stands for valence-shell electron-pair repulsion. The basis of VSEPR is that the electrons in bonds and lone pairs repel each other. To minimize the instability that results from these repulsions, a molecule will adopt the shape that places electron groups as far apart as possible. VSEPR theory helps us predict the shapes of simple molecules such as CO2 or NH3, but it’s much less helpful for bigger molecules such as glucose or DNA, whose shapes are governed by many additional factors.

What simple molecules are we talking about? Any polyatomic molecule in which a central atom is surrounded by up to six electron groups (either bonded atoms or lone pairs) will work. Examples include:

  • CO2 (a central carbon with two bonded oxygens)
  • NH3 (a central nitrogen with three bonded hydrogens and one lone pair)
  • PCl5 (a central phosphorus with five bonded chlorines)

 

According to VSEPR, there are five fundamental geometries that a molecule can adopt:

  • Linear (a central atom with two electron groups)
  • Trigonal planar (a central atom with three electron groups)
  • Tetrahedral (a central atom with four electron groups) 
  • Trigonal bipyramidal (a central atom with five electron groups)
  • Octahedral (a central atom with six electron groups)

 

Screen Shot 2021-09-28 at 5.45.31 PM

Because lone pairs are invisible, however, we must further specify the geometry that a molecule adopts. For example, NH3 has three bonds and one lone pair, for a total of four electron groups. Though the suggested geometry for four electron groups is tetrahedral, we must note that the lone pair is invisible. Therefore, the molecule actually resembles a triangular pyramid. The official name for this geometry is “trigonal pyramidal.”

The following table shows the molecular geometries that arise from all combinations of bonds and lone pairs.

Screen Shot 2021-09-28 at 5.45.38 PM

Let’s try some examples.

Example 1: Predict the molecular geometry of H2O

H2O has a central oxygen bonded to two hydrogens. It also has two lone pairs. Looking at the table, its molecular geometry is bent.

Example 2: Predict the molecular geometry of BrF5

BrF5 has a central bromine bonded to five fluorines. It also has one lone pair. Looking at the table, its molecular geometry is seesaw.

For practice, draw the table of geometries for yourself and commit the shapes to memory. It isn’t as hard as it sounds because you can predict the geometries by thinking about how best to spread the electron groups as far apart as possible. Good luck with your studying! 

Comments

topicTopics
academics MCAT study skills SAT medical school admissions expository writing English college admissions GRE GMAT LSAT MD/PhD admissions chemistry math physics ACT writing biology language learning strategy law school admissions graduate admissions MBA admissions creative writing homework help MD test anxiety AP exams interview prep summer activities history philosophy career advice premed academic advice ESL economics grammar personal statements study schedules admissions coaching law statistics & probability PSAT computer science organic chemistry psychology SSAT covid-19 CARS legal studies logic games USMLE calculus parents reading comprehension 1L Latin Spanish dental admissions DAT engineering excel political science French Linguistics Tutoring Approaches chinese research DO MBA coursework Social Advocacy case coaching classics genetics kinematics secondary applications skills verbal reasoning ISEE academic integrity algebra business business skills careers diversity statement geometry medical school mental health social sciences trigonometry 2L 3L Anki EMT FlexMed Fourier Series Greek IB exams Italian MD/PhD programs STEM Sentence Correction Zoom amino acids analysis essay architecture art history artificial intelligence astrophysics athletics biochemistry capital markets cell biology central limit theorem chemical engineering chromatography climate change clinical experience curriculum data science dental school finance first generation student functions gap year harmonics health policy history of medicine history of science information sessions integrated reasoning international students investing investment banking mba meiosis mitosis music music theory neurology phrase structure rules plagiarism presentations pseudocode sociology software software engineering teaching tech industry transfer typology virtual interviews work and activities writing circles