How to get every MCAT line-drawing stereochemistry question right

MCAT stereochemistry

Stereochemistry definitely made me question my ability to do well in my first organic chemistry class. I would turn my head round and round, or turn my paper round and round until I could finally visualize what the stereochemistry would be in 3D space. This is time consuming, and will take away time from other questions on your MCAT. But what if I told you there was an easier way?

It’s a common misconception that getting stereochemistry questions right requires superb spatial reasoning and visualization skills. I’m going to show you how to figure out the stereochemistry of any molecule, requiring no visualization. I can guarantee you that this method will work every single time, and will save you some precious time on your MCAT.

Step 1: Assign Priority to each of your atoms in the molecule using the Cahn-Ingold Prelog Method. 

Something that sounds super complicated becomes really simple if you follow some basic rules

Rule #1: Identify the central carbon in your molecule. the one that you are trying to figure out the stereochemistry of.

Since we are trying to find the stereochemistry of this carbon atom, this central carbon should be attached to 4 different groups.

Let’s take the molecule below as an example. Carbon #2 is the chiral carbon, since it is attached to 4 different groups (a methyl group to the left, an ethyl group to the right, a wedge hydroxyl group, and dash hydrogen group):

Screen Shot 2023-03-06 at 9.18.03 AM

Rule #2: The atom attached to your chiral carbon that has the highest atomic weight will be assigned priority 1.

In this example, it's carbon #2. Here, the O of the OH group has the highest priority, hence the OH, or hydroxyl group, will have priority 1. 

Next, we come to the two carbon atoms attached to both the right (carbon #3) and left (carbon #1) of carbon #2. Since both have the same atomic weight, we move on to the next atom attached to each of these carbons. For the carbon on the right of carbon #3, we have carbon #4 attached to it. For the carbon #1, we only have a hydrogen group attached to it. We now compare the atomic weights of carbon #4 and the hydrogen on carbon #1. Since carbon #4 has a higher atomic weight than the hydrogen on carbon #1, the entire ethyl group on the right will receive a priority of 2. The methyl group on the left gets a priority of 3. Lastly, the hydrogen group on top gets a priority value of 4. See the priorities, in green, below.

Screen Shot 2023-03-06 at 9.19.48 AM

Step 2: Stereochemistry

Scenario #1

Now that you have assigned priority to each of your atoms, you simply create a circle from 1 to 3. In this case, I am creating a clockwise circle, in which case, my molecule has the R configuration. If I was going in a counterclockwise circle, I would assign it as an S.

Screen Shot 2023-03-06 at 9.20.23 AM

Scenario #2

But there are cases where my atom with the least priority does NOT have a dashed line projecting from it, instead if it has a wedge line projecting from it. Here you simply follow the same circle procedure, but you switch the stereochemistry. In that case, even though I am going clockwise, it would be an S configuration instead of R. 

Assign priority → circle →  switch!

Screen Shot 2023-03-06 at 9.21.25 AM

Scenario #3

Lastly, what if my atom with the least priority does not have a wedge or a dash projecting from it? What if there is just a line? 

In that case, simply assign priority as usual, swap the first priority and the fourth priority for each other, and then do your circle. Then, whatever you get from your circle has to be switched. For example, after swapping if I am going clockwise, that would be an R, but then I’d have to switch it to an S. 

Assign priority → swap 1 and 4 → circle → switch!

Screen Shot 2023-03-06 at 9.22.09 AM

That’s it!

Those are the three possible scenarios you could be faced with when trying to assign stereochemistry to a line drawing. There was no head spinning or visualization involved - right? I hope that this saves you some time on your MCAT. It really is very efficient once you get the hang of it!

Harshini graduated from Wellesley College, majoring in Neuroscience and graduating summa cum laude and Phi Beta Kappa. Her thesis, in which she used data science to predict psychosis using the electronic health record, received the Hubel Thesis Prize.

Comments

topicTopics
academics study skills medical school admissions MCAT SAT college admissions expository writing strategy English MD/PhD admissions writing LSAT physics GMAT GRE chemistry academic advice graduate admissions biology math interview prep law school admissions ACT language learning test anxiety personal statements premed career advice MBA admissions test prep AP exams homework help creative writing MD mathematics computer science study schedules Common Application history summer activities secondary applications research philosophy organic chemistry economics supplements admissions coaching 1L dental admissions grammar statistics & probability PSAT psychology law legal studies ESL reading comprehension CARS PhD admissions SSAT calculus covid-19 logic games engineering USMLE medical school mentorship Latin Spanish admissions advice biochemistry parents AMCAS case coaching verbal reasoning DAT English literature STEM dental school excel genetics political science skills French Linguistics MBA coursework Tutoring Approaches academic integrity astrophysics chinese classics freewriting gap year letters of recommendation mechanical engineering technical interviews units Anki DO Social Advocacy algebra amino acids art history artificial intelligence business careers cell biology cold emails data science diversity statement first generation student geometry graphing kinematics linear algebra mental health pre-dental presentations quantitative reasoning revising software engineering study abroad tech industry time management work and activities writer's block 2L AAMC DMD IB exams ISEE MD/PhD programs MMI Sentence Correction adjusting to college algorithms analysis essay argumentative writing athletics business skills executive function fellowships finance functions genomics infinite information sessions international students internships logic networking office hours outlining poetry proofs resume scholarships science social sciences trigonometry 3L ADHD Academic Interest ChatGPT EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian JD/MBA admissions Japanese Lagrange multipliers London MD vs PhD Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture art art and design schools art portfolios bacteriology bibliographies biomedicine boarding school brain teaser burnout campus visits cantonese capacitors capital markets central limit theorem centrifugal force chem/phys chemical engineering chess chromatography class participation climate change clinical experience community service competitions constitutional law consulting cover letters creative nonfiction curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism embryology entropy escape velocity evolution extracurriculars fundraising harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite series institutional actions integrated reasoning intermolecular forces