Mastering MCAT physics problems through dimensional analysis

dimensional analysis MCAT physics

Preparing for the MCAT can be an overwhelming task, especially when it comes to the physics section. Physics concepts, equations, and calculations may seem daunting at first, especially with all the numbers and variables in the test’s complex problems. However, with the right approach, you can tackle this section with confidence and success. In this blog post, I dive into the invaluable tool of dimensional analysis and how it can be used to succeed on the MCAT.

Part 1: Understanding Dimensional Analysis

Dimensional analysis is a problem-solving technique used in physics to check the correctness of equations, perform unit conversions, and verify the consistency of physical quantities. By focusing on the dimensions (or units) of quantities involved in a problem, rather than their numerical values, you can simplify complex problems and identify potential errors. This strategy can also help you verify that you are using the correct equation. 

Part 2: Five Steps to Utilize Dimensional Analysis Effectively for MCAT physics

Step 1: Identify the Knowns and Unknowns

Begin by clearly identifying the known quantities and the unknowns in the problem. Understanding what information is given and what needs to be determined is crucial for applying dimensional analysis. For example, if you are given the mass of an object and asked to find its momentum, the mass will be a known quantity, while the momentum will be the unknown.

Step 2: Determine the Dimensional Equation

Next, determine the dimensional equation relating the known variables to the unknown quantity. This equation expresses the relationship between the different units involved in the problem. For example, if you are working with a problem related to velocity, the equation might involve distance and time.

Step 3: Analyze Units and Cancel Out

Once you have the dimensional equation, analyze the units of the known quantities and figure out how they can be manipulated to cancel out undesired units and leave only the desired units in the final answer. This process involves using conversion factors, which are relationships between different units.

Step 4: Perform Calculations and Verify Units

Apply the conversion factors and perform the necessary calculations, ensuring that the units cancel out correctly and yield the desired units for the final answer. At each step, double-check your calculations to ensure accuracy. 

Step 5: Evaluate the Answer

Once you have obtained a numerical answer with the correct units, evaluate it in the context of the problem and consider whether it makes sense. Check whether the magnitude aligns with your expectations and the given constraints. This step is crucial for verifying the reasonableness of your solution.

Part 3: Benefits of Dimensional Analysis on MCAT Physics

Error Detection and Prevention

Dimensional analysis provides a systematic way to identify errors in equations or calculations. By comparing the dimensions of each term in an equation, you can quickly spot inconsistencies or missing terms. This method will help prevent common mistakes.

Conceptual Understanding

Dimensional analysis encourages a deeper understanding of the fundamental concepts in physics. By focusing on the units of quantities, you develop a stronger intuition about the relationships between different physical properties. This comprehension allows you to solve problems efficiently and apply your knowledge to unfamiliar scenarios.

Unit Conversions

The MCAT physics section often involves questions that require unit conversions. Dimensional analysis simplifies this process, allowing you to convert between units with confidence. By consistently checking units, you minimize the risk of making conversion errors and increase your overall speed and accuracy in tackling the exam.

Conclusion

Mastering the physics portion of the MCAT requires a solid grasp of fundamental concepts and effective problem-solving techniques. Dimensional analysis is a valuable tool that empowers you to approach complex problems with clarity and accuracy. By breaking down problems into basic steps, applying appropriate conversion factors, and canceling out units, you can simplify calculations and avoid common errors.

Through practice and familiarity, dimensional analysis becomes an intuitive part of your problem-solving arsenal, enhancing your performance on the MCAT physics section. Combine this technique with a comprehensive study plan and a thorough understanding of physics principles, and you'll be well on your way to achieving success on your MCAT journey.

Caroline attended Yale College where she majored in History of Science and Medicine. She graduated with Latin Honors, Distinction in her major, and a 3.92 GPA. She was awarded the Heinrich von Staden Cup for her contribution to the social and intellectual conscience of the college.

Comments

topicTopics
academics study skills medical school admissions MCAT SAT college admissions expository writing strategy English MD/PhD admissions writing LSAT physics GMAT GRE chemistry graduate admissions biology math academic advice law school admissions interview prep ACT language learning test anxiety personal statements premed career advice MBA admissions AP exams homework help test prep creative writing MD study schedules computer science Common Application mathematics summer activities secondary applications history philosophy organic chemistry research economics supplements grammar 1L PSAT admissions coaching dental admissions psychology statistics & probability law legal studies ESL CARS PhD admissions SSAT covid-19 logic games reading comprehension calculus engineering USMLE mentorship Latin Spanish parents AMCAS biochemistry case coaching medical school verbal reasoning DAT English literature STEM admissions advice excel political science skills French Linguistics MBA coursework Tutoring Approaches academic integrity astrophysics chinese classics dental school gap year genetics letters of recommendation mechanical engineering units Anki DO Social Advocacy algebra art history artificial intelligence business careers cell biology data science diversity statement geometry kinematics linear algebra mental health presentations quantitative reasoning study abroad tech industry technical interviews time management work and activities 2L AAMC DMD IB exams ISEE MD/PhD programs MMI Sentence Correction adjusting to college algorithms amino acids analysis essay athletics business skills cold emails executive function fellowships finance first generation student functions graphing information sessions international students internships logic networking poetry pre-dental proofs resume revising science social sciences software engineering trigonometry writer's block 3L Academic Interest EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian JD/MBA admissions Lagrange multipliers London MD vs PhD Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture argumentative writing art art and design schools art portfolios bacteriology bibliographies biomedicine brain teaser burnout campus visits cantonese capacitors capital markets central limit theorem centrifugal force chem/phys chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism escape velocity evolution extracurriculars freewriting fundraising genomics harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite institutional actions integrated reasoning intermolecular forces intern investing investment banking lab reports letter of continued interest linear maps mandarin chinese matrices mba media studies medical physics meiosis