Orgo 1 Strategies: Understanding Hybridization

chemistry

Your professor gives you the below molecule. Can you quickly determine the hybridization of every atom?

Blog 1-2.png

Determining and understanding hybridization in Orgo 1 isn’t a futile practice. It’s an idea key to understanding mechanism and reactivity all the way through Orgo 2. Thankfully, the rules of thumb used to determine an atom’s hybridization are fairly straightforward. For example, most students recognize that..

triple-bonded atoms must be sp-hybridized 

and 

double-bonded atoms must be sp2-hybridized

but I’ve come across countless students who don’t understand the other electronic compositions that indicate sp2 hybridization. In particular, lots of students confuse sp3 and sp2 atoms. How do we decide between the two?

Lone-pair Atoms

You should always give due attention to lone-pair atoms when looking for sp2-hybridized atoms. Why?

Lone-pair atoms connected to pi-bonds, carbocations, and radical-carbons are sp2.

It’s really that simple. The trick to making this determination confidently is to understand that these lone-pair atoms must be directly attached to a pi-bond/carbocation/radical-carbon in order to be sp2. As long as you understand what I mean by “directly attached,” the rule always stands. This connectivity is best shown with the below images.


Blog 2-1.png

Conclusion

Pay close attention to lone-pair atoms when determining their hybridizations. If the lone-pair atom is directly connected to a pi-bond, carbocation, or radical, the atom is sp2. Just be careful not to be tempted by nearby pi-bonds/carbocations/radicals that are not directly connected to your atom of interest. (If the three hallmarks are too far away, you’re instead looking at a sp3 lone-pair atom.)

From here, I encourage you to draw out orbital representations of the three hybridization possibilities. Visualizing the sp2 layout is key to understanding resonance: check out the following (unrealistic but helpful) representations of carbocation and radical resonance.

Carbocation resonance:

Blog 3-2.png

Radical resonance:

Blog 4-1.png

Look at all the overlapping orbitals and figure out which overlaps represent which bonds in the line-angle structures to the left. Have fun!

Are you interested in connecting with an organic chemistry tutor this upcoming semester?  

Contact us!

Want to read more from our expert author, Andrew?

Orgo 1 Strategies: Finding and Comparing Alkene Hydration Products

Orgo 1 Strategies: The Power of Bromine in Synthesis

Orgo 1 Strategies: Two Red Flags to Guide Your Synthesis

Comments

topicTopics
academics study skills MCAT medical school admissions SAT college admissions expository writing English MD/PhD admissions strategy writing LSAT GMAT GRE physics chemistry biology math graduate admissions academic advice ACT interview prep law school admissions test anxiety language learning career advice premed MBA admissions personal statements homework help AP exams creative writing MD study schedules test prep computer science Common Application summer activities history mathematics philosophy organic chemistry secondary applications economics supplements research 1L PSAT admissions coaching grammar law psychology statistics & probability legal studies ESL dental admissions CARS SSAT covid-19 logic games reading comprehension engineering USMLE calculus mentorship PhD admissions Spanish parents Latin biochemistry case coaching verbal reasoning DAT English literature STEM excel medical school political science skills AMCAS French Linguistics MBA coursework Tutoring Approaches academic integrity chinese genetics letters of recommendation mechanical engineering Anki DO Social Advocacy admissions advice algebra art history artificial intelligence astrophysics business careers cell biology classics dental school diversity statement gap year geometry kinematics linear algebra mental health presentations quantitative reasoning study abroad tech industry technical interviews time management work and activities 2L DMD IB exams ISEE MD/PhD programs Sentence Correction adjusting to college algorithms amino acids analysis essay athletics business skills cold emails data science finance first generation student functions graphing information sessions international students internships logic networking poetry resume revising science social sciences software engineering trigonometry writer's block 3L AAMC Academic Interest EMT FlexMed Fourier Series Greek Health Professional Shortage Area Italian Lagrange multipliers London MD vs PhD MMI Montessori National Health Service Corps Pythagorean Theorem Python Shakespeare Step 2 TMDSAS Taylor Series Truss Analysis Zoom acids and bases active learning architecture argumentative writing art art and design schools art portfolios bacteriology bibliographies biomedicine brain teaser campus visits cantonese capacitors capital markets central limit theorem centrifugal force chemical engineering chess chromatography class participation climate change clinical experience community service constitutional law consulting cover letters curriculum dementia demonstrated interest dimensional analysis distance learning econometrics electric engineering electricity and magnetism escape velocity evolution executive function fellowships freewriting genomics harmonics health policy history of medicine history of science hybrid vehicles hydrophobic effect ideal gas law immunology induction infinite institutional actions integrated reasoning intermolecular forces intern investing investment banking lab reports linear maps mandarin chinese matrices mba medical physics meiosis microeconomics mitosis mnemonics music music theory nervous system neurology neuroscience object-oriented programming office hours